# On the Effective Description of Large Volume Compactifications

#### Diego Gallego



Universidad Pedagógica y Tecnológica de Colombia (UPTC)

Based on JHEP 1106 (2011) 087 [arXiv:1103.5469]

19th International Conference on Supersymmetry and Unification of Fundamental Interactions
Fermilab, August 29, 2011

KKLT proposal for type-IIB

[Kachru-Kallosh-Linde-Trivedi'03]

$$W = W_{flux}(U,S) + W_{np}(U,S,T),,$$

gives enough dynamics for all moduli!

Too many moduli!  $\mathcal{O}(50-100)$ .

KKLT proposal for type-IIB

[Kachru-Kallosh-Linde-Trivedi'03]

$$W = W_{flux}(U, S) + W_{np}(U, S, T),$$

gives enough dynamics for all moduli!

Too many moduli!  $\mathcal{O}(50-100)$ .

• Stabilize S and the  $U^i$  by  $W_{flux}$ .



KKLT proposal for type-IIB

[Kachru-Kallosh-Linde-Trivedi'03]

$$W = W_{flux}(U, S) + W_{np}(U, S, T),$$

gives enough dynamics for all moduli!

Too many moduli!  $\mathcal{O}(50-100)$ .

- Stabilize S and the  $U^i$  by  $W_{flux}$ .
- Stabilize  $T^i$  by  $W_{np}$ , regarding S and  $U^i$  frozen.

At SUSY points  $\langle F \rangle = 0$ .



KKLT proposal for type-IIB

[Kachru-Kallosh-Linde-Trivedi'03]

$$W = W_{flux}(U, S) + W_{np}(U, S, T),$$

gives enough dynamics for all moduli!

Too many moduli!  $\mathcal{O}(50-100)$ .

- Stabilize S and the  $U^i$  by  $W_{flux}$ .
- Stabilize  $T^i$  by  $W_{np}$ , regarding S and  $U^i$  frozen.

At SUSY points  $\langle F \rangle = 0$ .

Break SUSY and get a vanishing Cosmological Constant using a decoupled sector.

$$\langle F^d \rangle \neq 0$$
 and  $\langle V \rangle = 0$ .



KKLT proposal for type-IIB

[Kachru-Kallosh-Linde-Trivedi'03]

$$W = W_{flux}(U, S) + W_{np}(U, S, T),$$

gives enough dynamics for all moduli!

Too many moduli!  $\mathcal{O}(50-100)$ .

- Stabilize S and the  $U^i$  by  $W_{flux}$ .
- 2 Stabilize  $T^i$  by  $W_{np}$ , regarding S and  $U^i$  frozen.

At non-SUSY points  $\langle F \rangle \neq 0$ .



## Simplified vs. proper effective theory

A system ruled by

$$W = W_0(H) + W_1(H, L).$$

## Simplified

Motivated by the fact

$$W_0 \gg W_1$$
,

regard the H as fixed by  $W_0$  at "SUSY" points regardless the L fields.

2 "Efective" simplified theory:

$$W_{sim}(L) = W_0(H_0) + W_1(H_0, L),$$
  
 $K_{sim}(L, \overline{L}) = K(H_0, \overline{H}_0, L, \overline{L}),$   
 $f_{AB \ sim}(L) = f_{AB}(H_0, L),$ 

#### Proper effective action

The *H* should be integrated out

$$\left. \frac{\partial \mathcal{L}}{\partial H} \right|_{H_0(L)} = 0 \; ,$$

and the effective theory is

$$\mathcal{L}_{eff}(L) = \mathcal{L}(H_0(L), L)$$
 .

Usually is harder to proceed than with the original theory!

# Is this procedure reliable?

[Choi-Falkowski-Nilles-Olechowski-Pokorski '04, deAlwis '05, Abe-Higaki-Kobayashi '06, Blanco-Pillado-Kallosh-Linde '06,

Choi-Jeong-Okumora '08 & '09, Brizi-GomezReino-Scruca'09&10]

[Achucarro et al '07-'08-'10]

## Is this procedure reliable?

# Can this be done with light fields?

[Choi-Falkowski-Nilles-Olechowski-Pokorski '04, deAlwis '05, Abe-Higaki-Kobayashi '06, Blanco-Pillado-Kallosh-Linde '06,

Choi-Jeong-Okumora '08 & '09, Brizi-GomezReino-Scruca'09&10]

[Achucarro et al '07-'08-'10]

#### **Decoupling of the Equation of Motion**

#### A $\mathcal{N} = 1$ SUGRA in 4D, with

$$W(H^i, L^{\alpha}) = W_0(H^i) + \epsilon W_1(H^i, L^{\alpha}), \quad \epsilon \ll 1.$$

Scalar potential without gauge interactions,

$$V = e^K \left( K^{\bar{M}N} \overline{D}_{\bar{M}} \overline{W} D_N W - 3 |W|^2 \right) \stackrel{\epsilon \to 0}{\longrightarrow} e^K \left( K^{\bar{M}N} \overline{D}_{\bar{M}} \overline{W}_0 D_N W_0 - 3 |W_0|^2 \right),$$

with *i* running over the H's and  $\alpha$  over the L's

$$D_i W_0 = \partial_i W_0 + (\partial_i K) W_0$$
,  $D_\alpha W_0 = (\partial_\alpha K) W_0$ .

#### **Decoupling of the Equation of Motion**

#### A $\mathcal{N} = 1$ SUGRA in 4D, with

$$W(H^i, L^{\alpha}) = W_0(H^i) + \epsilon W_1(H^i, L^{\alpha}), \quad \epsilon \ll 1.$$

Scalar potential without gauge interactions,

$$V = e^K \left( K^{\bar{M}N} \overline{D}_{\bar{M}} \overline{W} D_N W - 3|W|^2 \right) \stackrel{\epsilon \to 0}{\longrightarrow} e^K \left( K^{\bar{M}N} \overline{D}_{\bar{M}} \overline{W}_0 D_N W_0 - 3|W_0|^2 \right),$$

with *i* running over the H's and  $\alpha$  over the L's

$$D_i W_0 = \partial_i W_0 + (\partial_i K) W_0$$
,  $D_\alpha W_0 = (\partial_\alpha K) W_0$ .

SUSY solution  $F_{0,i} = D_i W_0 = 0$ , not decoupled for generic K!

## **Decoupling of the Equation of Motion**

## A $\mathcal{N} = 1$ SUGRA in 4D, with

$$W(H^i, L^{\alpha}) = W_0(H^i) + \epsilon W_1(H^i, L^{\alpha}), \quad \epsilon \ll 1.$$

Scalar potential without gauge interactions,

$$V = e^K \left( K^{\bar{M}N} \overline{D}_{\bar{M}} \overline{W} D_N W - 3|W|^2 \right) \stackrel{\epsilon \to 0}{\longrightarrow} e^K \left( K^{\bar{M}N} \overline{D}_{\bar{M}} \overline{W}_0 D_N W_0 - 3|W_0|^2 \right),$$

with *i* running over the H's and  $\alpha$  over the L's

$$D_i W_0 = \partial_i W_0 + (\partial_i K) W_0$$
,  $D_\alpha W_0 = (\partial_\alpha K) W_0$ .

## SUSY solution $F_{0,i} = D_i W_0 = 0$ , not decoupled for generic K!

Two ways for SUSY decoupling

- **1** A *tuning* in the *W* VEV:  $\langle W_0 \rangle \sim \mathcal{O}(\epsilon)$ .
- Pactorizable structure:

[Achucarro et al. '07-'08]

$$K = K_H(H, \bar{H}) + K_L(L, \bar{L}) + \mathcal{O}(\epsilon)$$
.

#### SUSY effective theory for $\langle W_0 \rangle \sim \mathcal{O}(\epsilon)$

#### Truncated equations of motion (e.o.m.)

[Brizi-Gómez-Reino-Scrucca '09]

The chiral superfield e.o.m.

$$\partial_H W = 0$$
,

is exact at leading order  $\frac{\partial^{\mu}}{m_H}$ ,  $\frac{\psi^{\alpha}}{m_H^{3/2}}$ ,  $\frac{F^{\alpha}}{m_H^2}$  and  $\frac{F^{\Phi}}{m_H}$  with  $m_H = \partial_H \partial_H W$ .

Around  $\partial_i W = 0$  with  $\langle W_0 \rangle \sim \mathcal{O}(\epsilon)$  the corrections are negligible  $\mathcal{O}(\epsilon^3)$ !

#### For KKLT-like models

[DG-Serone'08-'09]

At the vacuum the superpotential is tiny ensuring a mass hierarchy. Then if

- The H multiplets are neutral.
- The lowest component is dictated by the scalar equation  $\partial_H W_o = 0$ .

 $W_{sim}$ ,  $K_{sim}$  and  $f_{AB,sim}$  are reliable at leading order in  $\epsilon \sim m_L/m_H$ .

The mass hierarchy explains the decoupling!

#### But in the natural case $\langle W \rangle \sim 1...$

• There is no superfield chiral e.o.m. in the market.

- [DG in preparation]
- There is NO MASS HIERARCHY: all scales are naturally given by

$$m_H \sim m_L \sim M_{SUSY} \sim \mathcal{O}(\langle e^{K/2}|W| \rangle)$$
.

#### But in the natural case $\langle W \rangle \sim 1...$

There is no superfield chiral e.o.m. in the market.

[DG in preparation]

• There is NO MASS HIERARCHY: all scales are naturally given by

$$m_H \sim m_L \sim M_{SUSY} \sim \mathcal{O}(\langle e^{K/2}|W| \rangle)$$
.

#### Large Volume Scenario (LVS)

Quevedo-Cambridge]

The CY volume, V, is stabilized at exponentially large values.

No need for a tuning in  $W! \langle W \rangle \sim 1$ .

• SUSY broken at low energies  $M_S \sim e^{-\mathcal{V}}$ ,

[Balasubramanian et al. '05]

• Testable TeV spectra, Inflationary models, ect...

[Quevedo-Cambridge, ect]

#### But

All fields, including the Dilaton and Complex structure
 W<sub>o</sub>(H) = W<sub>CS</sub>(S, U), get masses of the same order ∼ M<sub>S</sub>.

#### Pure moduli case

## Type-IIB orientifold compactifications, S and $U^i$ to be frozen.

4D, 
$$\mathcal{N} = 1$$
 SUGRA with,  $\mathcal{K}_{CS} = \mathcal{K}_{CS}(S, U)$ ,

[Becker<sup>2</sup> et al. '02]

$$K = -2\log\left(\mathcal{V} + \xi\left(S + \overline{S}\right)^{3/2}\right) + \mathcal{K}_{CS}, \quad W = W_{CS} + Ae^{-at}.$$

In case V = V(T, t's) very large the mixing is very small!

#### Pure moduli case

## Type-IIB orientifold compactifications, S and $U^i$ to be frozen.

4D, 
$$\mathcal{N} = 1$$
 SUGRA with,  $\mathcal{K}_{CS} = \mathcal{K}_{CS}(S, U)$ ,

[Becker<sup>2</sup> et al. '02]

$$K = -2\log\left(\mathcal{V} + \xi\left(S + \overline{S}\right)^{3/2}\right) + \mathcal{K}_{CS}, \quad W = W_{CS} + Ae^{-at}.$$

In case V = V(T, t's) very large the mixing is very small!

#### Factorizable models

[Binetruy et al. '04]

Described by a Kähler invariant function  $G = K + \log |W|^2$  such that

$$G(H, \bar{H}, L, \bar{L}) = G_H(H, \bar{H}) + G_L(L, \bar{L}) + \epsilon G_{mix}(H, \bar{H}, L, \bar{H}),$$

with  $\epsilon \ll 1$ , H and L two field sectors.

[Achucarro et al.'08, DG-Serone'08]

Mixing in the Lagrangian is suppressed and the sectors are decoupled.

#### Pure moduli case

#### Type-IIB orientifold compactifications, S and $U^i$ to be frozen.

4D, 
$$\mathcal{N} = 1$$
 SUGRA with,  $\mathcal{K}_{CS} = \mathcal{K}_{CS}(S, U)$ ,

[Becker<sup>2</sup> et al. '02]

$$K = -2\log\left(\mathcal{V} + \xi\left(S + \overline{S}\right)^{3/2}\right) + \mathcal{K}_{CS}, \quad W = W_{CS} + Ae^{-at}.$$

In case V = V(T, t's) very large the mixing is very small!

#### Factorizable models

[Binetruy et al. '04]

Described by a Kähler invariant function  $G = K + \log |W|^2$  such that

$$G(H,\bar{H},L,\bar{L}) = G_H(H,\bar{H}) + G_L(L,\bar{L}) + \epsilon G_{mix}(H,\bar{H},L,\bar{H}),$$

with  $\epsilon \ll 1$ , H and L two field sectors.

[Achucarro et al.'08, DG-Serone'08]

Mixing in the Lagrangian is suppressed and the sectors are decoupled.

#### SAME ARGUMENTS APPLY FOR THE LVS!

The simplified version is reliable at leading order in  $\epsilon \sim 1/\mathcal{V} \sim A e^{-at}$ .

Necessary in any realistic scenario. They break factorizability!

$$K\supset Z(H,\bar{H},L,\bar{L})|Q|^2$$
.

Necessary in any realistic scenario. They break factorizability!

$$K\supset Z(H,\bar{H},L,\bar{L})|Q|^2$$
.

#### Generalized factorizable models

Such that, with  $\phi^{M} = \{H, \mathcal{M}, Q\}$ ,

$$G(H, \bar{H}, L, \bar{L}) = G_H(H, \bar{H}) + G_{\mathcal{M}}(\mathcal{M}, \bar{\mathcal{M}}) + \epsilon G_{mix}(\phi, \bar{\phi}).$$

Analyze from the scalar Lagrangian,

[Kaku et al.'78, Kugo et al.'82]

$$\begin{split} \mathcal{L} = & G_{M\bar{M}} \partial_{\mu} \phi^{M} \partial^{\mu} \bar{\phi}^{\bar{M}} + G_{M} F^{M} \bar{U} + G_{\bar{M}} \overline{F}^{\bar{M}} U \\ & + \left( G_{M\bar{M}} - \frac{1}{3} G_{M} G_{\bar{M}} \right) F^{M} F^{\bar{M}} - 3 U \bar{U} - 3 e^{\frac{G}{2}} (U + \bar{U}) \,, \end{split}$$

 $\phi^M = (\phi^M, -F^M)$ , and we fixed  $\Phi = e^G(1, -U)$  the conf. compensator. In order to hold manifestly SUSY we keep the auxiliary components!

## Integrating out the $H^i = \{H^i, -F^i\}$ multiplets

#### E.o.m. and effective Lagrangian

For  $F^i$  the usual s.t.  $G_i = e^{-G/2}G_{i\bar{N}}F^{\bar{N}}$ , for the lowest component

$$\begin{split} G_{ij}F^{j}\bar{U}+G_{ij\bar{k}}F^{j}\overline{F}^{\bar{k}}-\frac{1}{2}(U+3\bar{U})G_{i\bar{j}}\overline{F}^{\bar{j}}-\frac{1}{3}G_{ij}G_{\bar{N}}F^{j}\overline{F}^{\bar{N}}\\ -\frac{1}{3}G_{M}G_{i\bar{j}}F^{M}\overline{F}^{\bar{j}}-G_{i\bar{j}}\partial^{2}\bar{H}^{\bar{j}}+G_{i\bar{j}\bar{k}}\partial^{\mu}\bar{H}^{\bar{j}}\partial_{\mu}\bar{H}^{\bar{k}}=\mathcal{O}(\epsilon)\,. \end{split}$$

No kinetic mixing!

## Integrating out the $H^i = \{H^i, -F^i\}$ multiplets

#### E.o.m. and effective Lagrangian

For  $F^i$  the usual s.t.  $G_i = e^{-G/2}G_{i\bar{N}}F^{\bar{N}}$ , for the lowest component

$$\begin{split} G_{ij}F^{j}\bar{U}+G_{ij\bar{k}}F^{j}\overline{F}^{\bar{k}}-\frac{1}{2}(U+3\bar{U})G_{i\bar{j}}\overline{F}^{\bar{j}}-\frac{1}{3}G_{ij}G_{\bar{N}}F^{j}\overline{F}^{\bar{N}}\\ -\frac{1}{3}G_{M}G_{i\bar{j}}F^{M}\overline{F}^{\bar{j}}-G_{i\bar{j}}\partial^{2}\bar{H}^{\bar{j}}+G_{i\bar{j}\bar{k}}\partial^{\mu}\bar{H}^{\bar{j}}\partial_{\mu}\bar{H}^{\bar{k}}=\mathcal{O}(\epsilon)\,. \end{split}$$

Slow varying sol's,  $F^i = \mathcal{O}(\epsilon) \Rightarrow G_i = \mathcal{O}(\epsilon)$ . Then  $H = \frac{H_0}{\epsilon} + \epsilon \Delta H(L)$ :

$$\partial_i G_H = \left(\partial_i W_H + \partial_i K_H W_H\right)/\bar{W}_H\Big|_{H_0} = 0$$
. leading F-flatness.

 $H_o$ , L-independent!. Effective Lagrangian for the  $L^{\alpha} = \{\mathcal{M}'s, Q's\}$ 

$$\begin{array}{lll} \mathcal{L}_{\text{eff}} & = & G_{\alpha\bar{\beta}}\partial_{\mu}L^{\alpha}\partial_{\mu}\bar{L}^{\bar{\alpha}} + G_{\alpha}F^{\alpha}\bar{U} + G_{\bar{\alpha}}\overline{F}^{\bar{\alpha}}U \\ & & + \left(G_{\alpha\bar{\beta}} - G_{\alpha}G_{\bar{\beta}}/3\right)F^{\alpha}F^{\bar{\beta}} - 3U\bar{U} - 3e^{\frac{G}{2}}(U + \bar{U}) + \mathcal{O}(\epsilon^2)\,, \\ & = & \mathcal{L}_{\text{simp}} + \mathcal{O}(\epsilon^2)\,. \end{array}$$

#### The simplified description is valid at leading order in $\epsilon$ !

Gauge isometries of the scalar manifold generated by holomorphic Killing vectors  $\delta \phi^I = \Lambda^A X_A^M$ ,  $A = 1, 2, \cdots \text{dim}(\mathcal{G})$ .

- from gauge invariance  $G_A = -iX_A^IG_I$  not all  $H^i$  field are fixed by the equations  $G_i = 0$ , unless neutral.
- if charged the  $H^i$  can be sourced back by the gauge fields.
- THE H MULTIPLETS SHOULD BE NEUTRAL!

Gauge isometries of the scalar manifold generated by holomorphic Killing vectors  $\delta \phi^I = \Lambda^A X_A^M$ ,  $A = 1, 2, \cdots \text{dim}(\mathcal{G})$ .

- from gauge invariance  $G_A = -iX_A^I G_I$  not all  $H^i$  field are fixed by the equations  $G_i = 0$ , unless neutral.
- if charged the  $H^i$  can be sourced back by the gauge fields.
- THE H MULTIPLETS SHOULD BE NEUTRAL!

The analysis is affected by

$$\mathcal{L}\supset G_AD^A+rac{1}{2}h_{AB}D^AD^B\,,$$

 $h_{AB} = Re(f_{AB})$  the gauge kin. functions and  $V^A = \{V^A, D^A\}$  the vector superfields.

The e.o.m. for the lowest components is changed by

$$\partial_i \mathcal{L} \supset D^A D^B \partial_i h_{AB} + \text{suppressed}.$$

If SUSY is D-broken it back reacts in the H, i.e.,  $F^i \sim D^2$ , no SUSY! Moreover H is L-dependent, not decoupled!

#### LVS with matter and gauge interactions

Suppressed wave functions are indeed realized ( $\epsilon \sim 1/\mathcal{V}$ )

[Conlon et al. '06]

$$K \supset \frac{Z}{v^n}|Q|^2$$
,  $n > 0$  modular weight.

#### LVS with matter and gauge interactions

Suppressed wave functions are indeed realized ( $\epsilon \sim 1/\mathcal{V}$ )

[Conlon et al. '06]

$$K \supset \frac{Z}{\mathcal{V}^n}|Q|^2$$
,  $n > 0$  modular weight.

- Not possible a general study: at least three different suppression factors. Particular studies:
  - W independent of Q,

[Cremades et al. '07]

• Q dependen W,  $N_c < N_f < 3N_c/2$ 

[Krippendorf-Quevedo '09]

- Q dependen W,  $N_f < N_c$ .
- In type-IIB orientifolds with fluxes,

[Lust et al. '04]

$$f = T + \kappa S$$
,

$$\kappa \sim$$
 1 so  $\partial_H h = \mathcal{O}(1)$  !

Nicely now the D's are suppressed the constrain is avoided!

The corrections to the simplified version are always suppressed by some powers of the volume! Independent of the modular weights!

#### **Conclusions**

- Decoupling of light chiral fields, in a SUSY fashion, can be understood through the generalized factorizable models.
  - the frozen fields be neutral,
  - ▶ the frozen values be dictated by  $\partial_i G_H = 0$ .
  - ▶ the gauge kinetic function dependency be suppressed, i.e.,  $\partial_i h_{AB} \sim \epsilon$ .
- In explicit realizations, LVS, the last condition is relaxed!
   The simplified description misses terms
  - ▶ suppressed by powers of V, lead by modular weight indep. ones!
  - non-suppressed higher order operators.
- Outlook: The factorizables models, in general, present a context where regardless the lack of a scale hierarchy with the SUSY breaking scale the effective description is still SUSY.
  - How can be this understood from a superspace point of view?

# Thank you!